Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
1.
Exp Eye Res ; 234: 109603, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37495069

RESUMEN

Anterior segment dysgenesis is a severe developmental eye disorder that leads to blindness in children. The exact mechanisms underlying this condition remain elusive. Recently, an increasing amount of studies have focused on genes and signal transduction pathways that affect anterior segment dysgenesis;these factors include transcription factors, developmental regulators, extracellular matrix genes, membrane-related proteins, cytoskeleton proteins and other associated genes. To date, dozens of gene variants have been found to cause anterior segment dysgenesis. However, there is still a lack of effective treatments. With a broader and deeper understanding of the molecular mechanisms underlying anterior segment development in the future, gene editing technology and stem cell technology may be new treatments for anterior segment dysgenesis. Further studies on the mechanisms of how different genes influence the onset and progression of anterior segment dysgenesis are still needed.


Asunto(s)
Segmento Anterior del Ojo , Anomalías del Ojo , Niño , Humanos , Segmento Anterior del Ojo/metabolismo , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Factores de Transcripción/genética , Biología Molecular
2.
Proc Natl Acad Sci U S A ; 119(29): e2200914119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858321

RESUMEN

The anterior segment of the eye consists of the cornea, iris, ciliary body, crystalline lens, and aqueous humor outflow pathways. Together, these tissues are essential for the proper functioning of the eye. Disorders of vision have been ascribed to defects in all of them; some disorders, including glaucoma and cataract, are among the most prevalent causes of blindness in the world. To characterize the cell types that compose these tissues, we generated an anterior segment cell atlas of the human eye using high-throughput single-nucleus RNA sequencing (snRNAseq). We profiled 195,248 nuclei from nondiseased anterior segment tissues of six human donors, identifying >60 cell types. Many of these cell types were discrete, whereas others, especially in the lens and cornea, formed continua corresponding to known developmental transitions that persist in adulthood. Having profiled each tissue separately, we performed an integrated analysis of the entire anterior segment, revealing that some cell types are unique to a single structure, whereas others are shared across tissues. The integrated cell atlas was then used to investigate cell type-specific expression patterns of more than 900 human ocular disease genes identified through either Mendelian inheritance patterns or genome-wide association studies.


Asunto(s)
Segmento Anterior del Ojo , Oftalmopatías , Adulto , Segmento Anterior del Ojo/citología , Segmento Anterior del Ojo/metabolismo , Humor Acuoso/citología , Humor Acuoso/metabolismo , Atlas como Asunto , Cuerpo Ciliar/citología , Cuerpo Ciliar/metabolismo , Oftalmopatías/genética , Estudio de Asociación del Genoma Completo , Humanos , Iris/citología , Especificidad de Órganos
3.
Invest Ophthalmol Vis Sci ; 63(1): 34, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-35077549

RESUMEN

Purpose: To explore whether oxidative stress and premature senescence occur in the anterior segment of acute primary angle-closure (APAC) eyes after increased intraocular pressure. Methods: The eye samples of 21 APAC patients, 22 age-related cataract patients, and 10 healthy donors were included. Aqueous humor (AqH), iris, and anterior lens capsule samples were collected. The levels of oxidative stress markers and senescence-associated secretory phenotype (SASP)-related cytokines in AqH were estimated using relevant reagent kits and multiplex bead immunoassay technique. The intensity of relevant markers in anterior segment tissues was examined by immunofluorescence- and senescence-associated ß-galactosidase (SA-ß-gal) staining. Results: Oxidative stress marker levels elevated significantly in the AqH of APAC eyes. Reactive oxygen species (ROS) and 8-hydroxydeoxyguanosine levels were positively correlated with preoperative peak intraocular pressure and age, whereas reduced glutathione/oxidized glutathione (GSH/GSSH) ratio was negatively correlated with both parameters. The levels of several SASP-related cytokines were markedly increased. ROS and malondialdehyde levels were positively correlated with the levels of some SASP-related cytokines, whereas superoxide dismutase level and GSH/GSSH ratio showed an opposite trend. The number of cells positive for oxidative mitochondrial DNA damage and apoptosis-related markers increased in the iris and anterior lens capsule of the APAC group. Senescence-associated markers (p16, p21, and p53) and SA-ß-gal activity were increased in the iris of the APAC group. Conclusions: Oxidative stress and premature senescence occurred in the anterior segment of APAC patients, suggesting that they may be involved in the development of pathological changes in the anterior segment of APAC eyes.


Asunto(s)
Segmento Anterior del Ojo/metabolismo , Senescencia Celular/fisiología , Glaucoma de Ángulo Cerrado/metabolismo , Presión Intraocular/fisiología , Estrés Oxidativo , Tomografía de Coherencia Óptica/métodos , Enfermedad Aguda , Segmento Anterior del Ojo/patología , Femenino , Glaucoma de Ángulo Cerrado/patología , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Estudios Retrospectivos
4.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34830247

RESUMEN

Topical drug delivery is one of the most challenging aspects of eye therapy. Eye drops are the most prevalent drug form, especially for widely distributed anterior segment eye diseases (cataracts, glaucoma, dry eye syndrome, inflammatory diseases, etc.), because they are convenient and easy to apply by patients. However, conventional drug formulations are usually characterized by short retention time in the tear film, insufficient contact with epithelium, fast elimination, and difficulties in overcoming ocular tissue barriers. Not more than 5% of the total drug dose administered in eye drops reaches the interior ocular tissues. To overcome the ocular drug delivery barriers and improve drug bioavailability, various conventional and novel drug delivery systems have been developed. Among these, nanosize carriers are the most attractive. The review is focused on the different drug carriers, such as synthetic and natural polymers, as well as inorganic carriers, with special attention to nanoparticles and nanomicelles. Studies in vitro and in vivo have demonstrated that new formulations could help to improve the bioavailability of the drugs, provide sustained drug release, enhance and prolong their therapeutic action. Promising results were obtained with drug-loaded nanoparticles included in in situ gel.


Asunto(s)
Antiinflamatorios/administración & dosificación , Portadores de Fármacos/farmacocinética , Nanotecnología/métodos , Soluciones Oftálmicas/administración & dosificación , Polímeros/farmacocinética , Administración Oftálmica , Animales , Segmento Anterior del Ojo/efectos de los fármacos , Segmento Anterior del Ojo/metabolismo , Segmento Anterior del Ojo/patología , Antiinflamatorios/farmacocinética , Disponibilidad Biológica , Catarata/tratamiento farmacológico , Catarata/metabolismo , Catarata/patología , Portadores de Fármacos/síntesis química , Portadores de Fármacos/clasificación , Liberación de Fármacos , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/metabolismo , Síndromes de Ojo Seco/patología , Glaucoma/tratamiento farmacológico , Glaucoma/metabolismo , Glaucoma/patología , Humanos , Micelas , Nanogeles/química , Nanopartículas/administración & dosificación , Nanopartículas/metabolismo , Nanotecnología/instrumentación , Soluciones Oftálmicas/farmacocinética , Polímeros/síntesis química , Polímeros/clasificación
5.
Adv Protein Chem Struct Biol ; 127: 271-290, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34340770

RESUMEN

Pseudoexfoliation syndrome (PEX) is characterized by the production of white extracellular fluffy clumps of microfibrillar material that aggregates in various organs throughout the body but is known to cause disease in the eye. The accumulation of PEX material (PEXM) in the anterior segment ocular structures is believed to cause an increase in intraocular pressure (IOP) resulting in pseudoexfoliation glaucoma (PEXG). The onset of PEXG is often bilateral but asymmetric-one eye often presents with glaucoma prior to the other eye. Proteomics has been used to identify key proteins involved in PEXM formation with the end goal of developing effective treatments for PEX and PEXG which may act through inhibiting the formation of the PEX aggregates. To date, a variety of proteins with various molecular functions have been identified from extracted anterior segment structures and fluids, such as aqueous humor (AH) and blood serum of patients affected by PEX. From past studies, some proteins identified in AH, lens capsule epithelium, iris tissue, and blood serum samples include vitamin D binding protein (GC), apolipoprotein A4 (APOA4), lysyl oxidase like-1 (LOXL1), complement C3, beta-crystalline B1, and B2, and antithrombin-III (SERPINC1). Each of these proteins have been observed in eyes with PEX at varying levels within the different eye structures. In this review, we further examine the anterior segment ocular proteomics of PEXM from past studies to better understand the mechanism of PEX and PEXG development. Both genetic and environmental risk factors have been implicated to be involved in the development of PEX and PEXG. This field is at an early stage of investigation identifying how these factors modify proteins both at the expression and functional level to cause changes leading to the pathophysiology of PEX glaucoma.


Asunto(s)
Segmento Anterior del Ojo/metabolismo , Síndrome de Exfoliación/metabolismo , Proteínas del Ojo/metabolismo , Proteómica , Humanos
6.
Development ; 148(16)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34338282

RESUMEN

Mutations in ITPR1 cause ataxia and aniridia in individuals with Gillespie syndrome (GLSP). However, the pathogenic mechanisms underlying aniridia remain unclear. We identified a de novo GLSP mutation hotspot in the 3'-region of ITPR1 in five individuals with GLSP. Furthermore, RNA-sequencing and immunoblotting revealed an eye-specific transcript of Itpr1, encoding a 218amino acid isoform. This isoform is localized not only in the endoplasmic reticulum, but also in the nuclear and cytoplasmic membranes. Ocular-specific transcription was repressed by SOX9 and induced by MAF in the anterior eye segment (AES) tissues. Mice lacking seven base pairs of the last Itpr1 exon exhibited ataxia and aniridia, in which the iris lymphatic vessels, sphincter and dilator muscles, corneal endothelium and stroma were disrupted, but the neural crest cells persisted after completion of AES formation. Our analyses revealed that the 218-amino acid isoform regulated the directionality of actin fibers and the intensity of focal adhesion. The isoform might control the nuclear entry of transcriptional regulators, such as YAP. It is also possible that ITPR1 regulates both AES differentiation and muscle contraction in the iris.


Asunto(s)
Aniridia/sangre , Aniridia/genética , Segmento Anterior del Ojo/crecimiento & desarrollo , Ataxia Cerebelosa/sangre , Ataxia Cerebelosa/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Discapacidad Intelectual/sangre , Discapacidad Intelectual/genética , Mutación , Cresta Neural/crecimiento & desarrollo , Adolescente , Animales , Segmento Anterior del Ojo/metabolismo , Niño , Preescolar , Modelos Animales de Enfermedad , Exones , Femenino , Técnicas de Sustitución del Gen , Células HEK293 , Humanos , Lactante , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células 3T3 NIH , Cresta Neural/metabolismo , Isoformas de Proteínas/metabolismo , Transfección , Adulto Joven
7.
Invest Ophthalmol Vis Sci ; 62(9): 21, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34259818

RESUMEN

Purpose: The purpose of this study was to evaluate the role of the canonical Wnt signaling in the development of the myopia. Methods: Plasma from adult patients with myopia, myopic animal models including the adenomatous polyposis coli (APC) gene mutation mouse model, and the form deprivation (FD) induced mouse model of myopia were used. Niclosamide, a canonical Wnt pathway inhibitor, was orally administrated in animal models. Plasma levels of DKK-1 were determined by using enzyme-linked immunosorbent assay. Refraction, vitreous chamber depth (VCD), axial length (AL), and other parameters, were measured at the end of the FD treatment. Canonical Wnt signaling changes were evaluated by Western blot analysis and immunostaining analysis. Results: Plasma level of Wnt inhibitor DKK-1 was markedly decreased in patients with myopia. Meanwhile, the canonical Wnt pathway was progressively activated during myopia development in mice. Moreover, inhibition of canonical Wnt signaling by niclosamide in mouse models markedly reduced lens thickness (LT), VCD, and AL elongation, resulting in myopia inhibition. Conclusions: Dysregulation of canonical Wnt signaling is a characteristic of myopia and targeting Wnt signaling pathways has potential as a therapeutic strategy for myopia.


Asunto(s)
Segmento Anterior del Ojo/metabolismo , Miopía/genética , Segmento Posterior del Ojo/metabolismo , Refracción Ocular/fisiología , Vía de Señalización Wnt/genética , Adolescente , Adulto , Animales , Segmento Anterior del Ojo/diagnóstico por imagen , Segmento Anterior del Ojo/efectos de los fármacos , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacocinética , Masculino , Ratones , Ratones Endogámicos C57BL , Miopía/metabolismo , Miopía/fisiopatología , Segmento Posterior del Ojo/diagnóstico por imagen , Segmento Posterior del Ojo/efectos de los fármacos , Privación Sensorial , Adulto Joven
8.
Cornea ; 40(11): 1487-1490, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33859085

RESUMEN

PURPOSE: The purpose of this study was to report the clinicopathological features of Peters anomaly in a child with nail-patella syndrome. METHODS: Nail-patella syndrome (NPS) is a rare autosomal dominant connective tissue disorder characterized by several anomalies of the extremities, joints and nails, glomerulopathy, and rarely ocular involvement. NPS is caused by heterozygous loss-of-functional mutations in the LMX1B gene that encodes the LIM homeodomain proteins. RESULTS: This case reports a new association of Peters anomaly in a child with NPS that also had classic skeletal/nail anomalies and protein losing nephropathy. Furthermore, DNA sequence analysis identified a novel missense heterozygous mutation in the LMX1B gene (Transcript ID: NM_001174146) resulting in the replacement of tryptophan by serine in codon 266, suggesting that the mutation (p.Trp.266Ser) affects LMX1B function by disturbing its interactions with other proteins. To the best of our knowledge, this association of Peters anomaly is novel and has not been reported earlier in the ophthalmic and systemic literature on NPS. CONCLUSION: The corneal findings in our case with NPS are similar to those seen in congenital corneal opacification because of Peters anomaly. This novel association of Peters anomaly with NPS may be related to the effects of the LMX1B mutation on corneal development.


Asunto(s)
Anomalías Múltiples , Segmento Anterior del Ojo/anomalías , Opacidad de la Córnea/genética , Anomalías del Ojo/genética , Proteínas con Homeodominio LIM/genética , Mutación Missense , Síndrome de la Uña-Rótula/genética , Segmento Anterior del Ojo/metabolismo , Opacidad de la Córnea/metabolismo , Anomalías del Ojo/metabolismo , Humanos , Lactante , Proteínas con Homeodominio LIM/metabolismo , Masculino , Síndrome de la Uña-Rótula/metabolismo , Fenotipo
9.
Curr Eye Res ; 46(8): 1075-1088, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33474991

RESUMEN

Purpose: To summarize the Integrated Stress Response (ISR) in the context of ophthalmology, with special interest on the cornea and anterior segment. Results: The ISR is a powerful and conserved signaling pathway that allows for cells to respond to a diverse array of both intracellular and extracellular stressors. The pathway is classically responsible for coordination of the cellular response to amino acid starvation, ultraviolet light, heme dysregulation, viral infection, and unfolded protein. Under normal circumstances, it is considered pro-survival and a necessary mechanism through which protein translation is controlled. However, in cases of severe or prolonged stress the pathway can promote apoptosis, and loss of normal cellular phenotype. The activation of this pathway culminates in the global inhibition of cap-dependent protein translation and the canonical expression of the activating transcription factor 4 (ATF4). Conclusion:The eye is uniquely exposed to ISR responsive stressors due to its environmental exposure and relative isolation from the circulatory system which are necessary for its function. We will discuss how this pathway is critical for the proper function of the tissue, its role in development, as well as how targeting of the pathway could alleviate key aspects of diverse ophthalmic diseases.


Asunto(s)
Córnea/metabolismo , Oftalmología , Estrés Fisiológico/fisiología , Factor de Transcripción Activador 4/metabolismo , Segmento Anterior del Ojo/metabolismo , Humanos , Estrés Oxidativo , Transducción de Señal
10.
Biomed Res Int ; 2020: 8206849, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33381584

RESUMEN

The role of the IκB/NF-κB signaling pathway in the uveoscleral outflow pathway was investigated with IκBα gene silencing mediated by the 3-(dimethylamino)-1-propylamine-conjugated glycogen (DMAPA-Glyp) derivative. The IκBα-siRNA-loaded DMAPA-Glyp complex was transfected into the ciliary muscles of rats by intracameral injection (labeled as the DMAPA-Glyp+siRNA group). The Lipofectamine™ 2000 (Lipo)/siRNA complex and the naked siRNA were set as the controls. The mRNA and protein expression of IκBα, NF-κBp65, and MMP-2 were analyzed by real-time PCR, western blotting, and in situ gelatin zymography. Nuclear translocation of NF-κBp65 was analyzed by immunofluorescence. Rat intraocular pressure (IOP) was monitored pre- and postinjection. Gene transfection efficiency and toxicity of the DMAPA-Glyp derivative were also evaluated. After RNA interference (RNAi), IκBα mRNA and protein expression were significantly inhibited. NF-κBp65 mRNA and protein expression showed no significant differences. Nevertheless, nuclear translocation of NF-κBp65 occurred in the DMAPA-Glyp+siRNA group. Both mRNA expression and activity of MMP-2 increased, with the largest increase in the DMAPA-Glyp+siRNA group. IOP in the DMAPA-Glyp+siRNA group fell to the lowest level on day 3 after RNAi. The levels of Cy3-siRNA in the ciliary muscle of the DMAPA-Glyp+siRNA group did not significantly decrease over time. At 7 and 14 d after RNAi, no significant pathological damage was detectable in the eyes injected with the DMAPA-Glyp derivative or the DMAPA-Glyp/siRNA complex. Taken together, our results suggest that downregulation of IκBα expression in the ciliary muscle plays a crucial role in reducing the IOP values of rats. IκBα may become a new molecular target for lowering IOP in glaucoma. The DMAPA-Glyp derivative is safe and feasible as an effective siRNA vector in rat eyes.


Asunto(s)
Segmento Anterior del Ojo , Humor Acuoso , Silenciador del Gen/fisiología , Proteínas I-kappa B , Transducción de Señal/genética , Animales , Segmento Anterior del Ojo/metabolismo , Segmento Anterior del Ojo/fisiología , Humor Acuoso/metabolismo , Humor Acuoso/fisiología , Diaminas/química , Sistemas de Liberación de Medicamentos , Glucógeno/química , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Masculino , FN-kappa B/genética , FN-kappa B/metabolismo , ARN Interferente Pequeño/genética , Ratas , Ratas Wistar , Transfección
11.
Exp Eye Res ; 199: 108200, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32858007

RESUMEN

Prion diseases are invariably fatal neurodegenerative disorders that have gained much publicity due to their transmissible nature. Sporadic Creutzfeldt-Jakob disease (sCJD) is the most common human prion disorder, with an incidence of 1 in a million. Inherited prion disorders are relatively rare, and associated with mutations in the prion protein gene. More than 50 different point mutations, deletions, and insertions have been identified so far. Most are autosomal dominant and fully penetrant. Prion disorders also occur in animals, and are of major concern because of the potential for spreading to humans. The principal pathogenic event underlying all prion disorders is a change in the conformation of prion protein (PrPC) from a mainly α-helical to a ß-sheet rich isoform, PrP-scrapie (PrPSc). Accumulation of PrPSc in the brain parenchyma is the major cause of neuronal degeneration. The mechanism by which PrPSc is transmitted, propagates, and causes neurodegenerative changes has been investigated over the years, and several clues have emerged. Efforts are also ongoing for identifying specific and sensitive diagnostic tests for sCJD and animal prion disorders, but success has been limited. The eye is suitable for these evaluations because it shares several anatomical and physiological features with the brain, and can be observed in vivo during disease progression. The retina, considered an extension of the central nervous system, is involved extensively in prion disorders. Accordingly, Optical Coherence Tomography and electroretinogram have shown some promise as pre-mortem diagnostic tests for human and animal prion disorders. However, a complete understanding of the physiology of PrPC and pathobiology of PrPSc in the eye is essential for developing specific and sensitive tests. Below, we summarize recent progress in ocular physiology and pathology in prion disorders, and the eye as an anatomically accessible site to diagnose, monitor disease progression, and test therapeutic options.


Asunto(s)
Segmento Anterior del Ojo/metabolismo , Regulación de la Expresión Génica , Priones/genética , Animales , Segmento Anterior del Ojo/patología , Homeostasis , Humanos , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Priones/biosíntesis , Conformación Proteica
12.
Ophthalmic Physiol Opt ; 40(5): 567-576, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32839973

RESUMEN

PURPOSE: To investigate the inhibitory effect of bendazol on form-deprivation myopia (FDM) in rabbits as well as the underlying biochemical processes. METHODS: Forty-eight 3-week-old New Zealand white rabbits were randomly assigned to three groups: a control group, a form-deprivation (FD) group and an FD + bendazol group (treated with 1% bendazol in the FD eyes). Refraction, corneal curvature, vitreous chamber depth (VCD) and axial length (AL) were assessed using streak retinoscopy, keratometry, and A-scan ultrasonography, respectively. Eyeballs were enucleated for histological analysis, and ocular tissues were homogenized to determine the mRNA and protein expression of hypoxia-inducible factor-1α (HIF-1α) and muscarinic acetylcholine receptors (mAChRs). RESULTS: Bendazol inhibited the progression of FDM and suppressed the upregulation of HIF-1α. At week 6, in the control, FD and FD + bendazol groups, the refraction values were 1.38 ± 0.43, 0.03 ± 0.47 and 1.25 ± 0.35 D, respectively (p < 0.001); the ALs were 13.91 ± 0.11, 14.15 ± 0.06 and 13.97 ± 0.10 mm, respectively (p < 0.001) and the VCDs were 6.56 ± 0.06, 6.69 ± 0.07 and 6.61 ± 0.06 mm, respectively (p < 0.001). HIF-1α was upregulated in FD eyes but downregulated in FD + bendazol eyes, while the mAChRs were the opposite. CONCLUSIONS: In the FD rabbit model, bendazol significantly inhibits the development of myopia and downregulates HIF-1α expression, which may provide a novel therapeutic approach for myopia control.


Asunto(s)
Segmento Anterior del Ojo , Bencimidazoles , Subunidad alfa del Factor 1 Inducible por Hipoxia , Miopía Degenerativa , Animales , Conejos , Segmento Anterior del Ojo/metabolismo , Antihipertensivos/administración & dosificación , Bencimidazoles/administración & dosificación , Biomarcadores/metabolismo , Córnea/metabolismo , Córnea/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Miopía Degenerativa/diagnóstico , Miopía Degenerativa/tratamiento farmacológico , Miopía Degenerativa/metabolismo , Soluciones Oftálmicas
13.
PLoS Genet ; 16(6): e1008774, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32555736

RESUMEN

Cranial neural crest (NC) contributes to the developing vertebrate eye. By multidimensional, quantitative imaging, we traced the origin of the ocular NC cells to two distinct NC populations that differ in the maintenance of sox10 expression, Wnt signalling, origin, route, mode and destination of migration. The first NC population migrates to the proximal and the second NC cell group populates the distal (anterior) part of the eye. By analysing zebrafish pax6a/b compound mutants presenting anterior segment dysgenesis, we demonstrate that Pax6a/b guide the two NC populations to distinct proximodistal locations. We further provide evidence that the lens whose formation is pax6a/b-dependent and lens-derived TGFß signals contribute to the building of the anterior segment. Taken together, our results reveal multiple roles of Pax6a/b in the control of NC cells during development of the anterior segment.


Asunto(s)
Segmento Anterior del Ojo/metabolismo , Cresta Neural/metabolismo , Neurogénesis , Factor de Transcripción PAX6/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Segmento Anterior del Ojo/citología , Segmento Anterior del Ojo/embriología , Movimiento Celular , Mutación , Cresta Neural/citología , Cresta Neural/embriología , Neuronas/citología , Neuronas/metabolismo , Factor de Transcripción PAX6/genética , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
14.
Exp Eye Res ; 197: 108046, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32376472

RESUMEN

Segmental flow in the human trabecular meshwork is a well-documented phenomenon but in depth mechanistic investigations of high flow (HF) and low flow (LF) regions are restricted due to the small amount of tissue available from a single donor. To address this issue we have generated and characterized multiple paired HF and LF cell strains. Here paired HF and LF cell strains were generated from single donors. Cells were characterized for growth and proliferation, as well as gene and protein expression of potential segmental region markers. Cells isolated from HF and LF regions have similar growth and proliferation rates. Gene expression data reveals vascular cell adhesion protein 1 (VCAM1), thrombospondin 2 (THBS2), and tissue inhibitor of metalloproteinase 1 (TIMP1) are potential markers of LF cells in vitro. Protein expression of VCAM1, THBS2 and TIMP1 are complex and may reflect the dynamic nature of the TM. Initial protein expression levels of these genes is either similar between HF and LF cells (VCAM1, THBS2), or higher in HF compared to LF in some strains (TIMP1). However, after long term culture LF cells express higher levels of VCAM1, TIMP1 and THBS2 protein compared to HF cells. HF and LF cell strains are a powerful new tool that enable understanding segmental flow allowing for multiple experiments on the same genetic background.


Asunto(s)
Humor Acuoso/metabolismo , Glaucoma/diagnóstico , Presión Intraocular/fisiología , Malla Trabecular/patología , Anciano , Segmento Anterior del Ojo/metabolismo , Segmento Anterior del Ojo/patología , Segmento Anterior del Ojo/fisiopatología , Femenino , Glaucoma/metabolismo , Glaucoma/fisiopatología , Humanos , Masculino , Microscopía Confocal , Persona de Mediana Edad , Malla Trabecular/metabolismo
15.
Int Ophthalmol ; 40(4): 891-899, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31894458

RESUMEN

OBJECTIVE: The present study aims to determine hydrogen sulfide (H2S) concentrations of the aqueous humor from patients with diabetic retinopathy (DR) to compare its levels in the anterior segments, also to investigate its effect on the retinal microvascular endothelial cells under high glucose condition. METHODS: AH samples were collected from patients with proliferative diabetic retinopathy (n = 11), non-proliferative diabetic retinopathy (n = 12) and diabetic patients without DR as controls (n = 12). There were 5 patients with PDR received intraocular anti-VEGF injection (Lucentis). Cultured RF/6A cells were grouped into control group, mannitol group, high glucose group and NaHS co-administrated high glucose group. Concentrations of H2S were detected by chemical assay. Cell apoptosis was evaluated by flow cytometry. RESULTS: A significantly higher H2S level was observed in AH samples of PDR patients among other groups. The H2S level of DR group was higher than that of control group. Decreased H2S levels in the AH of post-injected PDR patients were observed compared with their AH samples before the anti-VEGF injection. In cell culture, low concentration of NaHS can reverse high-glucose-induced apoptosis of RF/6A cells. CONCLUSION: Our study revealed increased H2S levels in the anterior segments of different DR patients. The anti-VEGF injection reduced the H2S level in AH from PDR patients. The study suggested that H2S may serve as a biomarker in the progression of PDR. On the other hand, the H2S donor exerted a protective effect on retinal vascular endothelial cells against high-glucose-induced apoptosis.


Asunto(s)
Segmento Anterior del Ojo/metabolismo , Retinopatía Diabética/metabolismo , Sulfuro de Hidrógeno/metabolismo , Humor Acuoso/metabolismo , Biomarcadores/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad
16.
Exp Eye Res ; 190: 107888, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31786158

RESUMEN

Elevated intraocular pressure (IOP) is the primary risk factor for glaucoma and is the only treatable feature of the disease. There is a correlation between elevated pressure and homeostatic reductions in the aqueous humor outflow resistance via changes in the extracellular matrix of the trabecular meshwork. It is unclear how these extracellular matrix changes affect segmental patterns of aqueous humor outflow, nor do we understand their causal relationship. The goal of this study was to determine whether there are changes in the segmental outflow regions with perfusion in normal eyes, and whether these regions change during the IOP homeostatic response to elevated pressure. Using human anterior segment perfusion organ culture, we measured the amount of high flow (HF), intermediate flow (MF), and low flow (LF) regions before and after 7 days of perfusion at either physiologic pressure ("1x") or at elevated pressure ("2x"). We found a small but significant decrease in the amount of HF regions over 7 days perfusion at 1x pressure, and a twofold increase in the amount of MF regions over 7 days perfusion at 2x pressure. Small positional differences, or shifts in the specific location of HF, MF, or LF, occurred on a per eye basis and were not found to be statistically significant across biological replicates. Differences in the amount of segmental flow regions of contralateral eyes flowed at 1x pressure for 7 days were small and not statistically significant. These results demonstrate that perfusion at physiologic pressure had little effect on the distribution and amount of HF, MF and LF regions. However, the overall amount of MF regions is significantly increased in response to perfusion at elevated pressure during IOP homeostatic resistance adjustment. The amount of both HF and LF regions was decreased accordingly suggesting a coordinated response in the TM to elevated pressure.


Asunto(s)
Segmento Anterior del Ojo/metabolismo , Humor Acuoso/fisiología , Presión Intraocular/fisiología , Hipertensión Ocular/metabolismo , Malla Trabecular/metabolismo , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Técnicas de Cultivo de Órganos , Donantes de Tejidos
17.
Exp Eye Res ; 190: 107890, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31811823

RESUMEN

PURPOSE: The avascular cornea, trabecular meshwork (TM), and lens obtain iron, an essential biometal, from the aqueous humor (AH). The mechanism by which this exchange is regulated, however, is unclear. Recently we reported that non-pigmented ciliary epithelial cells express ferroportin (Fpn) (Ashok, 2018b), an iron export protein modulated by hepcidin, the master regulator of iron homeostasis secreted mainly by the liver. Here, we explored whether ciliary epithelial and other cells in the anterior segment synthesize hepcidin, suggesting local regulation of iron exchange at this site. METHODS: Human and bovine eyes were dissected to isolate the ciliary body (CB), corneal endothelial (CE), TM, lens epithelial (LE), and outer epithelial cell layer of the iris. Total mRNA and protein lysates were processed to evaluate the synthesis and expression of hepcidin, the iron regulatory peptide hormone, Fpn, the only known iron export protein, ceruloplasmin (Cp), a ferroxidase necessary for iron export, transferrin receptor (TfR), a major iron uptake protein, and ferritin, a major iron storage protein. A combination of techniques including reverse transcription polymerase chain reaction (RT-PCR) of total mRNA, Western blotting of protein lysates, and immunofluorescence of fixed tissue sections were used to accomplish these goals. RESULTS: RT-PCR of isolated tissue samples revealed hepcidin-specific mRNA in the CB, TM, CE, and LE of the bovine eye. Western blotting of protein lysates from these tissues showed reactivity for hepcidin, Fpn, ferritin, and TfR. Western blotting and immunohistochemistry of similar tissues isolated from cadaveric human eyes showed expression of hepcidin, Fpn, and Cp in these samples. Notably, Fpn and Cp were expressed on the basolateral membrane of non-pigmented ciliary epithelial cells, facing the AH. CONCLUSIONS: Synthesis and expression of hepcidin and Fpn in the ciliary epithelium suggests local regulation of iron transport from choroidal plexus in the ciliary body to the AH across the blood-aqueous barrier. Expression of hepcidin and Fpn in CE, TM, and LE cells indicates additional regulation of iron exchange between the AH and cornea, TM, and lens, suggesting autonomous regulation of iron homeostasis in the anterior segment. Physiological and pathological implications of these observations are discussed.


Asunto(s)
Segmento Anterior del Ojo/metabolismo , Antiinfecciosos/metabolismo , Hepcidinas/biosíntesis , Adulto , Anciano , Animales , Western Blotting , Proteínas de Transporte de Catión/metabolismo , Bovinos , Ceruloplasmina/metabolismo , Cuerpo Ciliar/metabolismo , Electroforesis en Gel de Poliacrilamida , Endotelio Corneal/metabolismo , Células Epiteliales/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Hepcidinas/genética , Humanos , Iris/metabolismo , Cristalino/metabolismo , Masculino , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Malla Trabecular/metabolismo
18.
Exp Eye Res ; 189: 107815, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31560925

RESUMEN

Aniridia and Axenfeld-Rieger Syndrome are related, human ocular disorders that are typically inherited in an autosomal dominant manner. Both result from incorrect development of the eye and have, as their most serious consequences, elevated risk to develop the blinding condition glaucoma. This review will focus on describing the clinical presentations of Aniridia and Axenfeld-Rieger Syndrome as well as the molecular genetics and current and emerging therapies used to treat patients.


Asunto(s)
Anomalías Múltiples , Aniridia/genética , Segmento Anterior del Ojo/anomalías , Anomalías del Ojo/genética , Enfermedades Hereditarias del Ojo/genética , Proteínas de Homeodominio/genética , Aniridia/diagnóstico , Aniridia/metabolismo , Segmento Anterior del Ojo/metabolismo , Anomalías del Ojo/diagnóstico , Anomalías del Ojo/metabolismo , Enfermedades Hereditarias del Ojo/diagnóstico , Enfermedades Hereditarias del Ojo/metabolismo , Genotipo , Proteínas de Homeodominio/metabolismo , Humanos , Mutación
19.
Ocul Surf ; 17(4): 675-682, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31499236

RESUMEN

PURPOSE: To compare the meibomian gland (MG), non-invasive tear film break-up time (NITFBUT), anterior segment measurements between healthy children and children with hypogonadism. METHODS: A total of 80 eyes of 40 children with hypogonadism and 86 eyes of 43 age- and sex-matched healthy subjects were included in the study. The mean keratometry (Km), maximum keratometry (Kmax), central (CCT), thinnest (TCT) and apical (ACT) corneal thicknesses, corneal volume (CV), anterior chamber depth (ACD), irido-corneal angle (ICA), first and average non-invasive NITFBUT, MG loss, morphology of MGs, and MG distortion grade, specular endothelial cell density (CD), coefficient of variation (CoV), and percentage of hexagonal cells (HG) were analysed. RESULTS: The mean CCT and TCT values were approximately 20 µm lower on average in patients with hypogonadism (p < 0.05). MG loss was present 56.1% of the healthy children, the ratio increased to 81.3% in children with hypogonadism (p < 0.001). The morphology and distortion grade did not show any significant differences between groups (p > 0.05). The mean NITFBUT value were similar between groups (p > 0.05). The mean CD value did not show any significant difference between groups, however it decreased in the hormone replacement therapy (HRT) group (p = 0.005). CONCLUSIONS: MG loss is a physiological process that is prominent in the condition of sex steroid deficiency, but does not cause tear film alterations in children. Future studies investigating sex and gender effect on the ocular surface system in an age-based fashion are required to clearly communicate influences in the arenas of ocular surface research.


Asunto(s)
Segmento Anterior del Ojo/diagnóstico por imagen , Síndromes de Ojo Seco/metabolismo , Hipogonadismo/complicaciones , Glándulas Tarsales/metabolismo , Lágrimas/metabolismo , Tomografía de Coherencia Óptica/métodos , Adolescente , Segmento Anterior del Ojo/metabolismo , Niño , Síndromes de Ojo Seco/diagnóstico , Síndromes de Ojo Seco/etiología , Femenino , Humanos , Hipogonadismo/diagnóstico , Hipogonadismo/metabolismo , Masculino , Glándulas Tarsales/diagnóstico por imagen
20.
Mol Vis ; 25: 266-282, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31205408

RESUMEN

Purpose: Inflammatory responses may be involved in the glaucomatous process. Our previous studies mapped a T104M mutation in interleukin-20 receptor beta (IL-20RB) in a family with primary open angle glaucoma (POAG). IL-20RB can heterodimerize with IL-20RA to propagate signals from IL-20 family cytokines, IL-19, IL-20, and IL-24 (the type I receptor complex), or it can heterodimerize with IL-22RA to propagate signals from IL-20 and IL-24 (type II receptor complex). In this study, we investigated IL-20 heterodimeric receptor complexes in the trabecular meshwork (TM) compared to dermal fibroblast cell cultures, and examined the phosphorylation of signal transducer and activator of transcription (STAT)-1, -3, and -5 following exposure to IL-20 family cytokines. Additionally, we determined the effects of IL-20 family cytokines on outflow rates in anterior segment perfusion culture, an in vitro model of intraocular pressure (IOP) regulation. Methods: Primary human TM (HTM) cells were grown from dissected TM tissue, and IL-20 receptor expression was investigated with PCR. A Duolink assay was performed to investigate in situ IL-20 receptor protein interactions in HTM or dermal fibroblasts, and Imaris software was used to quantitate the association of the heterodimeric complexes. Phosphorylation of STAT-1, -3, and -5 were evaluated in HTM or dermal fibroblasts using Western immunoblotting after exposure to IL-10, IL-19, IL-20, IL-22, or IL-24. Anterior segment perfusion culture was performed in human cadaver and porcine eyes treated with IL-20, IL-19, or IL-24. Results: All of the IL-20 receptors, IL-20RA, IL-20RB, and IL-22RA1 were expressed in HTM cells. Two isoforms of IL-20RA were expressed: The V1 variant, which is the longest, is the predominant isoform, while the V3 isoform, which lacks exon 3, was also expressed. The Duolink assay demonstrated that the type I (IL-20RA-IL-20RB) and type II (IL-22RA1-IL-20RB) receptors were expressed in HTM cells and dermal fibroblasts. However, in the HTM cells, the type I receptor was present at significantly higher levels, while the type II receptor was preferentially used in the dermal fibroblasts. The HTM cells and the dermal fibroblasts predominantly phosphorylate the Ser727 site in STAT-3. The dermal fibroblasts had higher induction of phosphorylated STAT-1 compared to the HTM cells, while neither cell type had phosphorylated STAT-5 in the cell lysates. The outflow rates in the human anterior segment cultures were increased 2.3-fold by IL-20. However, IL-19 and IL-24 showed differential responses. For IL-19 and IL-24, 50% of the eyes responded with a 1.7- or 1.5-fold increase, respectively, while the other half did not respond. Similarly, perfused porcine anterior segments showed "responders" and "non-responders": IL-20 responders (2.3-fold increase in outflow, n=12) and non-responders (n=11); IL-19 responders (2.1-fold increase, n=7) and non-responders (n=5); and IL-24 responders (1.8-fold increase, n=12) and non-responders (n=5). Conclusions: Type I and type II IL-20 receptor complexes are expressed in human TM cells with predominant expression of the type I receptor (IL-20RA and IL-20RB), which propagates signals from all three IL-20 family cytokines. However, there was a variable response in the outflow rates following perfusion of cytokines in two different species. This may explain why some people are more susceptible to developing elevated IOP in response to inflammation.


Asunto(s)
Segmento Anterior del Ojo/metabolismo , Técnicas de Cultivo de Célula/métodos , Citocinas/metabolismo , Complejos Multiproteicos/metabolismo , Perfusión , Receptores de Interleucina/metabolismo , Transducción de Señal , Malla Trabecular/citología , Malla Trabecular/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Humanos , Receptores de Interleucina/química , Reología , Factores de Transcripción STAT/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...